skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Dunlap, Bart_H"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract White dwarfs (WDs) polluted by exoplanetary material provide the unprecedented opportunity to directly observe the interiors of exoplanets. However, spectroscopic surveys are often limited by brightness constraints, and WDs tend to be very faint, making detections of large populations of polluted WDs difficult. In this paper, we aim to increase considerably the number of WDs with multiple metals in their atmospheres. Using 96,134 WDs with Gaia DR3 BP/RP (XP) spectra, we constructed a 2D map using an unsupervised machine-learning technique called Uniform Manifold Approximation and Projection (UMAP) to organize the WDs into identifiable spectral regions. The polluted WDs are among the distinct spectral groups identified in our map. We have shown that this selection method could potentially increase the number of known WDs with five or more metal species in their atmospheres by an order of magnitude. Such systems are essential for characterizing exoplanet diversity and geology. 
    more » « less